Optimized Fuzzy Decision Tree for Structured Continuous-Label Classification

نویسندگان

  • K.Jeyalakshmi
  • J.Jenifer
چکیده

Mainly understandable decision trees have been intended for perfect symbolic data. Conventional crisp decision trees (DT) are extensively used for classification purpose. However, there are still many issues particularly when we used the numerical (continuous valued) attributes. Structured continuouslabel classification is one type of classification in which the label is continuous in the data. Although, the main aim is to classify data into classes that are a set of predefined ranges and can be ordered in a hierarchy. Some of those difficulties can be addressed using fuzzy decision trees (FDT). Over the years, additional methodologies have been investigated and proposed to deal with continuous or multi-valued data, and with missing or noisy features. In recent times, with the growing popularity of fuzzy representation, a few researchers independently have proposed to utilize fuzzy representation in decision trees to deal with similar situations. Fuzzy concept connects the gap between symbolic and non symbolic data by using linking qualitative linguistic terms with quantitative data. In our proposed work, a new method of optimized fuzzy decision trees is presented. This method proposed a novel decision tree technique for handling continuous valued attributes with user defined membership. The efficient results of our proposed fuzzy decision trees are compared at the end in the experimentation. From the experimentation, we are conclude that the proposed fuzzy decision trees is well effective than the existing system interms of accuracy rate as well as reduce the error performance of the system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Algorithm for Optimization of Fuzzy Decision Tree in Data Mining

Decision-tree algorithms provide one of the most popular methodologies for symbolic knowledge acquisition. The resulting knowledge, a symbolic decision tree along with a simple inference mechanism, has been praised for comprehensibility. The most comprehensible decision trees have been designed for perfect symbolic data. Classical crisp decision trees (DT) are widely applied to classification t...

متن کامل

A Tree-structured Classification Model Based on Label Semantics

Label Semantics is a random set based framework for Computing with Words. Imprecise concepts are modeled by the degrees of appropriateness of a linguistic expression as defined by a fuzzy set. An approach to decision tree induction based on this framework is studied and its performance when applied to realworld datasets is compared with the C4.5 and other machine learning algorithms. A method o...

متن کامل

Diagnosis of Coronary Artery Disease via a Novel Fuzzy Expert System Optimized by Cuckoo Search

In this paper, we propose a novel fuzzy expert system for detection of Coronary Artery Disease, using cuckoo search algorithm. This system includes three phases: firstly, at the stage of fuzzy system design, a decision tree is used to extract if-then rules which provide the crisp rules required for Coronary Artery Disease detection. Secondly, the fuzzy system is formed by setting the intervals ...

متن کامل

Comparing different stopping criteria for fuzzy decision tree induction through IDFID3

Fuzzy Decision Tree (FDT) classifiers combine decision trees with approximate reasoning offered by fuzzy representation to deal with language and measurement uncertainties. When a FDT induction algorithm utilizes stopping criteria for early stopping of the tree's growth, threshold values of stopping criteria will control the number of nodes. Finding a proper threshold value for a stopping crite...

متن کامل

DIAGNOSIS OF BREAST LESIONS USING THE LOCAL CHAN-VESE MODEL, HIERARCHICAL FUZZY PARTITIONING AND FUZZY DECISION TREE INDUCTION

Breast cancer is one of the leading causes of death among women. Mammography remains today the best technology to detect breast cancer, early and efficiently, to distinguish between benign and malignant diseases. Several techniques in image processing and analysis have been developed to address this problem. In this paper, we propose a new solution to the problem of computer aided detection and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014